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ABSTRACT: Metabolic networks have gained broad atten-
tion in recent years as a result of their important roles in
biological systems. However, how to quantify the global
stability of the metabolic networks is still challenging. We
develop a probabilistic landscape approach to investigate the
global natures of the metabolic system under external
fluctuations. As an example, we choose a model of the
carbohydrate metabolism and the anaplerotic synthesis of
oxalacetate in Aspergillus niger under conditions of citric acid
accumulation to explore landscape topography. The landscape
has a funnel shape, which guarantees the robustness of system
under fluctuations and perturbations. Robustness ratio (RR), defined as the ratio of gap between lowest potential and average
potential versus roughness measured by the dispersion or square root of variations of potentials, can be used to quantitatively
evaluate the global stability of metabolic networks, and the larger the RR value, the more stable the system. Results of the entropy
production rate imply that nature might evolve such that the network is robust against perturbations from environment or
network wirings and performs specific biological functions with less dissipation cost. We also carried out a sensitivity analysis of
parameters and uncovered some key network structure factors such as kinetic rates or wirings connecting the protein species
nodes, which influence the global natures of the system. We found there is a strong correlation between the landscape
topography and the input-output response. The more stable and robust the metabolic network is, the sharper the response is.
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Developing quantitative and global methodologies to
investigate large-scale biochemical networks has become

one of the important questions in the post-genomic era.
Metabolic networks, as dynamically regulated, complex
interactive nonlinear systems, have been studied extensively
in recent years.1−6 However, how to quantify the global stability
of metabolic networks is still challenging. So far there are
limited studies from the physical viewpoints to investigate why
metabolic networks are so robust and how they perform their
biological functions.
In bulk dynamics, deterministic chemical reaction equations

can be used to describe the local dynamics of metabolic
networks. However, the global natures of the system are hard to
address using this method. For a high-dimensional network
with huge state space, a challenging job is to understand how
seemingly infinite number of genotypes can produce a finite
number of functional phenotypes. A probabilistic landscape
approach may provide a possible route for this, because
according to landscape theory different states correspond to
different probabilities to appear. The functional state should
possess higher probability of appearance or lower potential
energy, while unfunctional states should have lower probability
or higher potential.7−12 In the cell, there are two sources of

noise including intrinsic noise from statistical fluctuations of the
finite molecular number and external noise from highly
dynamical and inhomogeneous environments.13−19 Therefore,
one should study chemical reaction networks in fluctuating
conditions to model more realistic cellular environments. The
extrinsic noise can be introduced by external random force,20

and the corresponding probabilistic evolution follows a
diffusion equation. For intrinsic fluctuations, one can explore
master equation formalism,21 which gives the evolution of
probability due to random natures of the system in terms of
numbers.
However, a master equation or diffusion equation is difficult

to solve in high-dimensional state space. The degrees of
freedom grow exponentially with the number of the
components (different species of proteins in the metabolic
networks). We will employ a self-consistent mean field
approximation to split the components to effectively reduce
the dimensions of the system, and make it tractable for
computations. In this way, the degree of freedom reduces from
NM to N·M, where N is the concentration intervals (how many
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segments of each concentration variable) and M is the number
of variables (how many different kinds of proteins).
The solutions of diffusion equation or master equation

provide information on probabilistic evolution. We will explore
the global natures of the network from physical perspectives, in
terms of the potential landscape11,12,22,23 closely linked to the
steady state probability. To illustrate our ideas we studied a
metabolic network as an example,24,25 which is a model of the
carbohydrate metabolism and the anaplerotic synthesis of
oxalacetate in Aspergillus niger, under conditions of citric acid
accumulation. According to the underlying potential landscape
of the network, we will investigate the global stability
quantitatively under the fluctuations by quantifying landscape
topography and calculating the robustness ratio (RR). We will
also do the sensitivity analysis of parameters to uncover some

key network structure factors such as kinetic rates or wirings
connecting the protein nodes, which determine the global
stability and the function of the metabolic system.

■ RESULTS AND DISCUSSION

Figure 1 gives an illustrative wiring diagram of the metabolic
network with 8 variables of protein concentration. In terms of
the self-consistent mean field approximation, we can obtain the
steady state probability distributions of the 8 variables of
protein concentrations giving diffusion coefficient D character-
izing environmental fluctuation strengths. Then we can infer
the potential landscape according to the links between the
generalized potential U and the steady state probability Pss(x):
U(x) = −ln Pss(x).7−12,22,23,26 For the 8-dimensional network, it
is difficult to visualize and analyze the landscape directly.

Figure 1. Metabolic network model of carbohydrate metabolism in Aspergillus niger in the condition of citric acid production. Dependent variables
are numbered 1−8: G6P, X1, glucose-6-phosphate; F6P, X2, fructose-6-phosphate; PEP, X3, phosphoenol pyruvate; PYR, X4, pyruvate; OXAL, X5,
oxaloacetate; MAL, X6, malate; NADH, X7, NADH; NAD, X ′7, NAD; ATP, X8, ATP; and ADP, X ′8, ADP. Independent variables are numbered 9−
24: Substrate, X9, substrate; HKTRP1, X10, hexokinase-substrate transport step; G6P-DH, X11, glucose-6-phosphate dehydrogenase; PGI, X12,
phosphoglucose isomerase; PFK, X13, phosphofructokinase; PK, X14, pyruvate kinase; PC, X15, pyruvate carboxylase; MDHAL, X16, malate
dehydrogenase; GOT, X17, aspartate aminotransferase; TRP2, X18, malate transport; FM, X19, fumarase; TRP3, X20, pyruvate transport; NH4

+, X21,
ammonium; Cit, X22, citrate; DHase, X23, dehydrogenases; and ATPase, X24, ATPases.

Figure 2. (A) Distribution and (B) spectrum of the potential energy U.
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Therefore, we first investigate a lower dimensional projection of
it.
Here, for the metabolic network, we first used a constant

diffusion coefficient to calculate the results, i.e., the diffusion
coefficient matrix D[x(t)] is a constant diagonal matrix. This
choice more likely describes the external environmental
fluctuations, because generally external fluctuations do not
necessarily depend on the internal concentrations of proteins
(variable x). In the Supporting Information we also give the
results when the diffusion coefficient is concentration-depend-
ent, which quantifies the influence of intrinsic noise. For these
two forms of diffusion matrix, we obtained similar results, which
are stated in the main text and Supporting Information.
Zero Dimensional Projection of Landscape and

Robustness of System. First, we studied the spectrum and
distribution of the potential U, since the potential is a
multidimensional function in protein concentration x space.
Figure 2A is a zero dimensional projection of potential U. We
can see that the distribution is approximately Gaussian. The
lowest potential energy U is the global minimum of the
potential landscape, which is at about the same place (in
concentration space) as the deterministic solutions of the
averaged chemical reaction equations for the system. Figure 2B
illustrates the spectrum of the potential. We can see clearly that
the global minimum of the potential is significantly far from the
rest of the spectrum or the distribution. There exists a
significant gap between the ground state global minimum and
the rest of the potential spectrum. Since the ground state
probability is exponentially associated with the potential, a large
gap in potential implies large discrimination in populations of
ground state against the other states. In other words, the basin
of attraction has much larger weights than any other states of
the system. This can guarantee the stability of the system.
From the underlying potential landscape spectrum, we can

further explore the robustness of the system against environ-
mental perturbations and fluctuations. Here, we define
robustness ratio RR for the network as the ratio between the
gap δU and roughness ΔU of the underlying potential
landscape. δU is the difference between the global minimum
Umin, and the average of U, ⟨U⟩, and ΔU is the spread or the
half width of the distribution of U. So RR = δU/ΔU. δU is a
measure of the bias or the slope toward the global minimum of
the potential landscape, whereas ΔU is a measure of the
averaged roughness or the local trapping of the potential
landscape. The larger the robustness ratio is, the bigger the gap
compared with roughness and the probability of the basin of
attraction are, and so the more stable the system is. So we can
see the robustness ratio RR = δU/ΔU quantifies the
topography of the underlying landscape.
We obtained the landscape results separately for different

diffusion coefficients D, characterizing the external fluctuations.
Thus, the effects of the external fluctuations on the system and
associated landscape can be explored. Figure 3A shows the
robustness curve when external noise D is changed. We can see
clearly that RR decreases when the diffusion coefficient D
increases, which means that larger external fluctuations destroy
the stability of the system.
For the perturbations of chemical reaction rate constants,

they effectively change the strengths of the wirings in the
network. We changed the parameters of the equations in terms
of a probability distribution with a mean of the unperturbed
rate, ku, and a standard deviation σ = lp·ku; here lp represents
the perturbation level applied to the system. For every

perturbation level lp, the corresponding landscape can be
acquired. Therefore, by changing lp we can investigate the
effects of perturbations of chemical reaction rate constants on
the landscape and therefore the robustness of the system.
From Figure 3B we can see that robustness decreases when

the perturbation level lp increases. This implies that when
certain perturbations are given to parameters the metabolic
system is inclined to be less stable, and therefore the system
with current parameters might be the more stable one. The
parameters of the metabolic network we have chosen are from
Torres’ work,24 which gave the parameter values of the model
and the corresponding references where these parameters were
obtained directly by experiments or by estimations according to
the Michaelis−Menten rate equations.27 Therefore, the
parameters we have chosen for the model have experimental
justifications, and our results in terms of the landscape of the
network show that the current parameter values might be those
making the system most stable, which is reasonable from the
view of evolutional selection.
In addition, we also explored the standard deviation of RR

when perturbation level lp was changed. Figure 3C shows that
the standard deviation of RR increases as lp increases. This
implies that larger variances or changes of the connection
strengths of wirings of the network lead to less stability.
Therefore, large RR guarantees the robustness of the system
against perturbations in the underlying chemical reaction rates
characterizing the wiring strengths of the network as well as the
external fluctuations.

One Dimensional Projection of Landscape: U versus Q
and U versus rmsd. Figure 4 shows the one-dimensional
projection of U on the overlapping order parameter Q with
respect to the global minimum. Here Q is defined as Q =
(∑i

Nxixi
min)/(|x∥xmin|), so that we can keep track of the degree

of “closeness” or overlap between an arbitrary state x to the
global minimum state xmin in the state space of the protein
concentrations. Q = 1 represents the global minimum state and
Q = 0 represents the decorrelated states with no overlap with
the global minimum. Figure 4A shows U versus Q at different
diffusion coefficient D. From Figure 4A, we can see a downhill
slope of the potential U in Q toward the global minimum Umin.
The potential U reaches to the global minimum Umin when Q =
1. This shows a funnel of U along Q toward the global
minimum of the potential landscape. In addition, we can see
that the slop of the curve decreases as D characterizing external
noise increases. This shows that with external noise increased,
the slope of the funnel decreases and the system is less stable.
We also calculated the results of U versus root mean squared

distance (rmsd = [∑i
Ni(xi − xi

min)2]1/2). Here rmsd represents

Figure 3. Robustness rate (RR = δU/ΔU; δU is the difference between
the global minimum Umin and the average of U, ⟨U⟩, and ΔU is the
spread or the half width of the distribution of U) versus (A) external
noise D and (B) perturbation level of wiring strengths lp. (C) Standard
deviation of RR versus perturbation level of wiring strengths lp.
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the distance between a state point and global minimum in state
space. A large rmsd corresponds to small Q. Figure 4B shows U
versus rmsd at different diffusion coefficient D. We can see
again a funnel landscape down to the basin of attraction, and
the landscape shape is shallower when D increases.
We further varied the perturbation level lp of chemical

reaction rates or wiring strengths to explore the change of the
slope of the landscape funnel. From Figure 4C,D, we see that
increasing perturbation levels lp of rates of wiring strengths of
metabolic networks will lead to the landscape slope being less

biased or tilted toward the global minimum or the basin of
attraction and more flat. So the slope of the landscape can also
be a measure for the robustness of the network. Therefore,
fewer fluctuations and perturbations lead to a higher slope and
more funneled landscape, and the system will be more stable
and robust.
Additionally, we explored the relative Q and rmsd of the

lowest energy state or the ground state at different
perturbations. Here we took original rates or wiring strengths
and smallest D as the reference state with which to compare

Figure 4. (A) Q (Q = (∑i
Nxixi

min)/(|x∥xmin|), representing the degree of “closeness” or overlap between an arbitrary state x to the global minimum
state) versus U and (B) rmsd (rmsd = (∑i

N(xi − xi
min)2)1/2, root mean squared distance, representing the distance between a state point and global

minimum in state space) versus U with diffusion coefficient D changed. (C) Q versus U and (D) rmsd versus U with perturbation level of wiring
strengths lp changed.

Figure 5. (A) Relative Q and (B) rmsd of the lowest energy state at different diffusion coefficient D. (C) Relative Q and (D) rmsd of the lowest
energy state at different perturbation level of wiring strengths lp.
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others. Figure 5A,B shows the effects of external noise on the

relative Q and rmsd. We can see that the relative Q of the

ground state decreases and the relative rmsd of the ground state

increases when D increases. This shows that at large external

noise the ground state becomes further away from the ground

state where there is no noise, and the system becomes less

stable. Figure 5C,D shows the effects of perturbation level lp of

rate parameters or wirings on the relative Q and rmsd. With the

Figure 6. (A) Distribution of U at different Q. (B) Distribution of U at different rmsd.

Figure 7. (A) Two-dimensional and (B) 3-dimensional landscape of the metabolic network for the two variables X1 (G6P) and X4 (PYR).

Figure 8. Entropy production rate versus (A) external noise D and (B) perturbation level lp. Entropy production rate versus RR with (C) external
noise D changed and (D) perturbation level of wiring strengths lp changed.
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same trend of slope compared with Figure 5A,B, it shows that
the system becomes less stable as perturbation level lp
increases.
Figure 6A shows the distribution of U at different Q, and

Figure 6B shows the distribution of U at different rmsd. Blue
color represents lower probability, and red color represents
higher probability. From the figure, we can see that at every Q
and rmsd, the distribution of U is a Gaussian distribution, and
when Q is big or rmsd is small, the distribution of U moves
toward a lower potential energy state. This is reasonable
because a larger Q or smaller rmsd means that the state
approaches the ground state and therefore possesses lower
potential.
Projected Landscape in Two- and Three-Dimensional

Space and Entropy Production Rate. We studied the 2-
dimensional and 3-dimensional landscape of the metabolic
network. Figure 7 shows the 2-dimensional and 3-dimensional
landscape separately projected on variable X1 (G6P) and X4
(PYR) for the diffusion coefficient D = 0.001. From the
landscape we can see that there is one stable basin of attraction
for the metabolic network, and the funneled landscape shape
guarantees the stability and robustness of the system.
In addition, we calculated the entropy production rate or

dissipation cost for different fluctuations.28 Figure 8A,B shows
that the entropy production rate increases as external noise D
or perturbation level lp increases. This shows that at larger
fluctuations from external environment or internal wirings, the
system costs more dissipations. We also investigated the
entropy production rate versus RR at different fluctuations.
Figure 8C,D shows the curve of the entropy production rate
versus RR separately for changing D and changing lp. We can
see for both conditions the entropy production rate decreases
as the robustness ratio RR of the system increases. This shows
that the less the variation of rate parameters or wiring strengths
or external fluctuations, the more robust the network is and the
less the entropy production or dissipations for the network are.
This can be important for the network design. This implies that
nature might evolve such that the network is robust against

internal and environmental perturbations and performs specific
biological functions with less dissipation cost. In our study, this
is also the equivalent of optimizing the robustness or stability of
the network.

Sensitivity Analysis of Parameters and Control of
Flux. To discover the key connections or wirings of the
metabolic network responsible for the stability of the system,
we did sensitivity analysis of parameters. For the chemical
reaction rate equations of the metabolic network, each equation
has one pair of rate constants corresponding separately to
synthesis and degradation reactions, and there are totally 16
rate constants for 8 reactions. By analyzing the influence of
these rate constants on the robustness of system, we can obtain
which reactions are more important and further which protein
elements and parameters are crucial in maintaining the
robustness of the system.
Here we gave rate constants a variance (Δk/k) to change.

We can compute robustness at different Δk/k for different rate
constants. Figure 9A shows the results of robustness for 16 rate
constants in different Δk/k. We selected the four top important
parameters corresponding to the four most crucial reactions.
They are the synthesis reactions separately for G6P (X1), F6P
(X2), PEP (X3), and ATP(X8):

+ + →

+ →

+ + + + →

+ + + →

X X X X

X X X

X X X X X X

X X X X X

8 9 10 1

1 12 2

2 8 13 21 22 3

3 7 8 14 8 (1)

Compared with the diagram in the Figure 1, we can find that
for these four reactions the first three of reactions (the synthesis
of G6P (X1), F6P (X2), PEP (X3)) are the upstream parts of the
whole metabolic pathway, which represent the most important
process in process (i), the formation of pyruvate (X4). These
three reactions determine the formation of pyruvate (X4). For
the last reaction, the synthesis reaction of ATP (X8), it should
be very important, because that ATPs appear in many places

Figure 9. Effects of (A) rate constants and (B) independent variables on the robustness. In panel A, the x axis represents: α1,β1, α2,β2, ..., α8,β8, In
panel B, the x axis represents X9, X10, ..., X24. Magnitudes for every (C) rate constant αi and (D) independent variable Xj summed over all fluxes Vi.
Blue bars represent positive flux, and red bars represent negative flux.
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and play important roles on the whole metabolic pathway,
which we can see clearly in Figure 1.
Figure 9(B shows the effects of independent variables Xj (j =

9, 10, ..., 24) on the robustness and stability of the system. We
can find some important independent variables including X9,
X10, X11, X15, X20, X24.
We also computed the influence of rate constants and

independent variables separately on the fluxes. Sensitivity with
respect to the change of rate constants is defined:24,25,29

α
α

=
∂
∂

S X
X

( , )
ln( )
ln( )i i

i

i (2)

The influence of independent variables on dependent
variables can be represented using logarithmic gains:

=
∂
∂

=L X X
X

X
L( , )

ln( )

ln( )j k
j

k
jk

(3)

Besides the logarithmic gains of metabolite concentration,
the flux logarithmic gains can also be defined. In steady state,
the flux of a particular dependent variable Xi (i = 1, 2, ..., n)
could be represented:

∏ ∏α β= = =+

=

+

=

+
−V X X Vi i

j

n m

j
g

i
j

n m

j
h

i
1 1

ij ij

(4)

The logarithmic gains of flux about independent variable Xk
should be

∑= ++

=

L V X g g L( , )i k ik
j

n

ij jk
1 (5)

In the same way, the sensitivity of flux about rate constant αi
should be:

∑α = ++

=

S V g S( , ) 1i i
j

n

ij ji
1 (6)

Figure 9C,D show separately the influence of the rate
constants αi (i = 1, 2, ..., 9) and independent variables Xj (j = 9,

10, ..., 24) on flux. We can see from Figure 9C that among all of
the rate constants, α1, α2, α3, α8, affect the flux the most
significantly, which coincides with our sensitivity analysis results
in Figure 9A by computing RR. Figure 9D shows that X9, X10,
X11, X15, X20, X24 among all of the independent variables
influence flux significantly, which is also consistent with the
results in Figure 9B.
We also did the correlation analysis between these results of

these two methods (flux and robustness ratio) as showed in
Figure 10. The results show that there are better correlations
between ΔRR and flux, and the correlation coefficient reaches
to 0.9 and 0.77 (see Supporting Information for more details),
respectively, for sensitivity of parameters and logarithmic gains
of independent variables when σ = 0.1 (representing variance of
the parameters changed).
In Figure 10B,D, one point is off the fit. The reason is that

different independent variables could have different influence
on the system. By correlation analysis between the results of
these two methods (flux and robustness ratio), we found that
the trend of the fit is mostly consistent, i.e. when flux increase,
the RR also increase, which can also be reflected by the
correlation coefficient that reaches to 0.77 in Figure 10B. By
computing flux and RR we obtained similar results of sensitivity
analysis, and therefore our approach provides another way to
see how rate constants and independent variables influence the
stability of system.

Input and Output. We also investigated the relation of
input and output for the metabolic pathway. Here we define X1
as input and X8 as output. Figure 11A shows input versus
output at different diffusion coefficients D. From the figure we
can see that lower diffusion coefficients correspond to larger RR
leading to a higher slope of the curve. It also means that the
more stable the system is, the larger the slope of the curve is.
The input-output curve measures the capability of the response
of output to input for the system. The slope represents how
sharp the response is. Figure 11B gives clearer results, where we
can see that the slope of the input-output curve increases as RR
increases. In addition, Figure 11C shows the entropy
production rate versus the slope of input-output curve or

Figure 10. Correlation of ΔRR and concentration for (A) sensitivity of parameters and (B) logarithmic gains of independent variables. Correlation
of ΔRR and flux for (A) sensitivity of parameters and (B) logarithmic gains of independent variables.
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response. We can see that when the entropy production rate is
small, the slope is big with sharp response and the system is
robust, which is consistent with our aforementioned results and
discussions about the entropy production rate. Figure 11D−F
shows separately input versus output, RR versus slope of the
input-output curve or response, and entropy production rate
versus slope of input-output curve or response when the
perturbation level lp of rate parameters or connection wiring
strength is changed. We can see the same trends as the results
for external noise for these three figures. Therefore, for both
external noise D and perturbation level lp, we can draw the
same conclusion that the slope of the input-output curve or
response also can be used to evaluate the robustness of the
metabolic network. The larger the slope of the input-output
curve or the sharper the response is of the output to input, the
more stable the system is.
Conclusion. We explored the global natures of a metabolic

network in terms of the potential landscape. To reduce the
degrees of freedom of the system, a self-consistent mean field
approximation method was developed. We used the exper-
imentally inferred rate parameters to study the system by
computing RR (robustness ratio) from the underlying land-
scape topography, Q (similarity order parameters), rmsd,
entropy production rates, input-output response, etc. and
uncovered that the network is funneled in the space of protein
concentrations toward the ground state under the external
noise and internal chemical rate perturbations. Robustness ratio
(RR) characterizing the landscape topography provides a way
to quantitatively measure the global robustness and stability of
the metabolic network, and more stable systems have larger RR
value. Results of the entropy production rate imply that nature
might evolve such that the network is robust against internal
and environmental perturbations and performs specific bio-
logical functions with less dissipation cost. By sensitivity
analysis of parameters, we uncovered some key network
structure factors such as kinetic rates or wirings connecting
the protein species nodes, which influence the global natures of
the system. We also found that there is a strong correlation
between the landscape topography and the input-output
response. The more stable and robust the metabolic network

is, the sharper the response is. Therefore, a funneled landscape
provides an optimal criterion to select the suitable parameter
subspace of cellular networks, guarantee the robustness, with
less dissipations, and perform specific biological functions,
which is helpful for the network design. Our approach is
general and can be applied to other protein networks and gene
regulatory networks,30 with one or several global minimum.

■ METHODS
Our aim is to uncover the potential landscape, so we first study
the chemical reaction network involved in the metabolic
network. We need to take into account the external statistical
fluctuations. The statistical natures of the chemical reactions
can be captured by the corresponding diffusion equation, which
describes the evolution of the networks probabilistically. The
diffusion equation is hard to solve due to its inherent huge
dimensions. We therefore use the self-consistent mean field
approximation to reduce the dimensionality.7,31 In this way, we
can follow the time evolution and steady state probability of the
protein concentrations. The steady state probability is closely
associated with the potential landscape, which is our target for
globally characterizing the system.

Metabolic Network.24,25 An approach32 has been used to
build up a detailed quantitative model of carbohydrate
degradation and oxalacetate formation in Aspergillus niger,
under conditions of citric acid accumulation.24

Chemical reaction equations are based on the power law
formalism. By using this formalism the rate of a given process
Vi, is written

∏α=
=

+

V Xi i
j

n m

j
g

1

i j,

(7)

Here Xj (j = 1, ..., n for dependent variables and j = n + 1, ...,
n + m for independent variables) are variables (enzymes,
metabolites, effectors) influencing the rates. α and gi,j are the
rate constants and kinetic orders of biochemical kinetics. The
rate equations for a biochemical system can then be written in
terms of power law function approximations as follows:

∏ ∏α β= − =
X
t

X X i n
d
d

; 1, ...,i
i j

g
j j

hi j i j, ,

(8)

The parameters αi and gi,j are associated with the rate law for
net synthesis of Xi, whereas βi and hi,j are associated with the
rate law for net degradation of Xi. Therefore, the two items of
the equations represent synthesis and degradation process
separately.
Figure 1 represents the main mechanism of the metabolic

system.24,33 Three main metabolic processes are involved in
citric acid accumulation by Aspergillus niger: (i) breakdown of
carbohydrates by the glycolytic pathway to produce pyruvate;
(ii) anaplerotic formation of oxalacetate from pyruvate; and
(iii) accumulation of citric acid within the tricarboxylic acid
cycle. Process (i) and (ii) have been shown to be of great
importance both for the final yields and in the metabolic
control of the whole process.33 Here step (i) corresponds to
the glucose-6-phosphate (X1) → fructose-6-phosphate (X2) →
phosphoenol pyruvate (X3) → pyruvate (X4) process, and step
(ii) corresponds to the pyruvate (X4) → oxalacetate (X5)
process.
The fundamental equations that characterize the dependent

variables of concentrations are given by the mass balance
equations. After the kinetic orders and the rate constants are

Figure 11. Input versus output for (A) different diffusion coefficients
D and (D) different perturbation level of wiring strengths lp. (B, E)
Corresponding RR versus slope of input-output response curve in
panels A and D. (C, F) Corresponding entropy production rate versus
slope of input-output response curve in panels A and D.
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determined, the model can be represented by the following
differential equations:
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= × −
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Here X1, ..., X8 represent eight different variables of
concentrations as follows: X1 (glucose-6-phosphate), X2
(fructose-6-phosphate), X3 (phosphoenol pyruvate), X4 (pyr-
uvate), X5 (oxaloacetate), X6 (malate), X7 (NADH), and X8
(ATP).
Mean Field Self-Consistent Approximation. The

Fokker−Planck or diffusion equation is the one for the time
evolution of the probability of some specific state P: P(X1, X2,
..., Xn,t), where X1, X2, ..., Xn represent the concentration of
proteins. The dimensionality of P is exponential: NM, where N
is the segments of each protein concentrations and M is the
number of species of proteins. Therefore the equation is not
feasible to solve exactly due to large exponential computational
dimensionality. We developed a self-consistent mean field
approach,7,12,31 to split the probability into the products of
individual ones. First, let us assume P(X1, X2, ..., Xn,t) =
Πi

nP(Xi,t), that is, separating the joint distribution P(x1, x2, ...,
xM) into the product of each individual one P(x1), P(x2), ...,
P(xM) and then self-consistently solving each P(xi) under the
average or mean field influence of others. This effectively
reduces the dimensionality from NM to N × M, and therefore
the problem is computationally tractable.
Gaussian Approximation. Self-consistent mean field

approximation can reduce the dimensionality of system. In
practice, we can further simplify the computations by
considering the moment equations. In principle, once we
know all moments, then we can construct probability
distribution. In many cases, we cannot get all moments. We

can start from moment equations and then simply assume
specific probability distribution based on physical argument,
which means we give some specific relations between
moments.31 For example, Poisson distribution has only one
parameter, so we can calculate all other moments from the first
moment, mean. Here we use Gaussian distribution as an
approximation, and then we need two moments, mean and
variance.
For a one-dimensional FPE (Fokker−Planck equation):21,34

∂
∂

= − ∂
∂

+ ∂
∂

P x t
t x

C x P x t D
x

d x P x t
( , )

[ ( ) ( , )] [ ( ) ( , )]
2

2

(10)

Here C(x), D(x) is “drift and diffusion part”. For this
equation, in weak noise D ≪ 1, if Dσ(t) is not large enough to
1/D level, the equation for the mean ⟨ x ̇⟩ of the variables x and
variance of corresponding variables σ can be written
approximately as (through multiplying both sides of the
Fokker−Planck Equation by x and x2 and performing the
integral)21,34

σ σ

̇ =

σ̇ = + +

t C

t t t

x x t

A A t t D x t

( ) [ ( )]

( ) ( ) ( ) ( ) ( ) 2 [ ( )]T
(11)

Here, x, σ(t), and A(t) are vectors and tensors, and AT(t) is
the transpose of A(t). The matrix elements of A is Aij =
(∂Ci[X(t)])/(∂xj(t)). According to this equations, we can solve
x(t) and σ(t). We consider here only diagonal element of σ(t)
from mean field splitting approximation. Therefore, the
evolution of distribution for one variable can be obtained
using the mean and variance by Gaussian approximation:

π σ σ
= − − ̅P x t

t
x x t

t
( , )

1
2 ( )

exp
[ ( )]

2 ( )

2

(12)

Here, for metabolic network, we first compute the results
when the diffusion coefficient is constant, i.e., the diffusion
coefficient matrix D[x(t)] is constant diagonal matrix. This
condition more likely describes the external environmental
fluctuations. In the Supporting Information, we also give the
results when the diffusion coefficient is concentration-depend-
ent. In eq 11, replacing D[x(t)] with d·x (here d is constant),
we can get the concentration dependent diffusion coefficient,
which quantifies the influence of intrinsic noise.
The probability obtained above corresponds to one fixed

point or basin of attraction. One solution of the equations
determines one of the fixed points and also gives the variation
around the basin of attraction, so it is intrinsic. If the system
allows multistability, then there are several probability
distributions localized at each basin of attraction, and with
different variations. Thus, the total probability is the weighted
sum of all these probability distributions (P(x,t) = w1P1(x,t) +
w2P2(x,t), w1 + w2 = 1). The weighting factors (w1,w2) are the
size of the basin, which is nothing but the relative size of the set
of initial values ending up with a specific basin of attraction.
Finally, once we have the total probability, we can construct

the generalized potential landscape by the relationship with the
steady state probability Pss(x): U(x) = −ln Pss(x). This is the
reverse order of the usual statistical mechanics of first obtaining
the potential energy function, exponentially Boltzman weight-
ing it, and then studying the partition function or probability of
the associated system. Here we look for the inherent potential
function from the steady state probability. In the metabolic
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system, every chemical parameter, such as the protein
production/decay rates, contributes to the fluctuations of the
system. All of these effects are encoded in the total probability
distribution, and consequently in the underlying potential
landscape.
Entropy Production Rate. In a nonequilibrium open

system, there are constant exchanges in energy and information
which result dissipations. The dissipation of energy, closely
related to the entropy production rate in the steady state, is a
global physical characterization of the nonequilibrium system.
The entropy formula for the system is well-known:28

∫= −S k P t P t dxx x( , ) ln ( , )B (13)

By differentiating the above equation, the increase of the
entropy at constant temperature T can be obtained as follows:

∫
∫ ∫

̇ = + ∇·

= − ∇ − · − ·

TS k T P dx

k T P dx dx

J

F J F J

(ln 1)

( ln )B

B

(14)

here −∫ (kBT∇ lnP − F)·J dx = ep is the entropy production
rate,28 and ∫ F·J dx = hd is the mean rate of the heat dissipation.
J(x,t) = FP−D∇P is the probability flux, and D is diffusion
coefficient matrix.12 In steady state, S ̇ = 0, and the entropy
production ep is balanced by the heat dissipation hd.

■ ASSOCIATED CONTENT
*S Supporting Information
This material is free available frree of charge via the Internet at
http://pubs.acs.org/.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: ekwang@ciac.jl.cn; jin.wang.1@stonybrook.edu.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
C.H.L. and E.K.W. are supported by the National Natural
Science Foundation of China (Grant 21190040) and the 973
project 2009CB930100 and 2010CB933600. J.W. acknowl-
edges support from the National Science Foundation and
National Natural Science Foundation of China (Grant
11174105).

■ REFERENCES
(1) Hatzimanikatis, V., Li, C., lonita, J., and Broadbelt, L. (2004)
Metabolic networks: enzyme function and metabolite structure. Curr.
Opin. Struct. Biol. 14, 300−306.
(2) Guimera, R., and Amaral, L. A. N. (2005) Functional cartography
of complex metabolic networks. Nature 433, 895−900.
(3) Ma, H., and Zeng, A.-P. (2003) Reconstruction of metabolic
networks from genome data and analysis of their global structure for
various organisms. Bioinformatics 19, 270−277.
(4) Bennett, M. R., Pang, W. L., Ostroff, N. A., Baumgartner, B. L.,
Nayak, S., Tsimring, L. S., and Hasty, J. (2008) Metabolic gene
regulation in a dynamically changing environment. Nature 454, 1119−
1122.
(5) Zhu, Q., Qin, T., Jiang, Y., Ji, C., Kong, D., Ma, B., and Zhang, H.
(2011) Chemical basis of metabolic network organization. PLoS
Comput. Biol. 7, e1002214.

(6) Heuett, W., Beard, D., and Qian, H. (2008) Linear analysis near a
steady-state of biochemical networks: control analysis, correlation
metrics and circuit theory. BMC Syst. Biol. 2, 44.
(7) Sasai, M., and Wolynes, P. (2003) Stochastic gene expression as a
many-body problem. Proc. Natl. Acad. Sci. U.S.A. 100, 2374−2379.
(8) Hornos, J., Schultz, D., Innocentini, G., and Wang, J. (2005) Self-
regulating gene: an exact solution. Phys. Rev. E 72, 051907.
(9) Qian, H., and Reluga, T. C. (2005) Nonequilibrium
thermodynamics and nonlinear kinetics in a cellular signaling switch.
Phys. Rev. Lett. 94, 028101.
(10) Han, B., and Wang, J. (2007) Quantifying robustness of cell
cycle network: Funneled energy landscape perspectives. Biophys. J. 92,
3755−3763.
(11) Wang, J., Xu, L., and Wang, E. (2008) Potential landscape and
flux framework of non-equilibrium networks: Robustness, dissipation
and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA.
105, 12271−12276.
(12) Li, C. H., Wang, J., and Wang, E. (2011) Potential landscape
and probabilistic flux of a predator prey network. PLoS ONE 6,
e17888.
(13) McAdams, H. H., and Arkin, A. (1997) Stochastic mechanisms
in gene expression. Proc. Natl. Acad. Sci. U.S.A. 94, 814−819.
(14) Elowitz, M. B., and Leibler, S. (2000) A synthetic oscillatory
network of transcriptional regulators. Nature 403, 335−338.
(15) Swain, P. S., Elowitz, M. B., and Siggia, E. D. (2002) Intrinsic
and extrinsic contributions to stochasticity in gene expression. Proc.
Natl. Acad. Sci. U.S.A. 99, 12795−12800.
(16) Thattai, M., and Van, O. A. (2001) Intrinsic noise in gene
regulatory networks. Proc. Natl. Acad. Sci. U.S.A. 98, 8614−8619.
(17) Vilar, J. M. G., Guet, C. C., and Leibler, S. (2003) Modeling
network dynamics: The lac operon, a case study. J. Cell Biol. 161, 471−
476.
(18) Paulsson, J. (2004) Summing up the noise in gene networks.
Nature 427, 415−418.
(19) Hasty, J., Pradines, J., Dolnik, M., and Collins, J. J. (2000)
Noise-based switches and amplifiers for gene expression. Proc. Natl.
Acad. Sci. U.S.A. 97, 2075−2080.
(20) Hasty, J., Isaacs, F., Dolnik, M., McMillen, D., and Collins, J. J.
(2001) Designer gene networks: Towards fundamental cellular
control. Chaos 11, 207−220.
(21) Van Kampen, N. G. (1992) Stochastic Processes In Chemistry And
Physics, pp 120−127, North-Holland, Amsterdam.
(22) Li, C. H., Wang, J., and Wang, E. (2011) Landscape and flux
decomposition for exploring global natures of non-equilibrium
dynamical systems under intrinsic statistical fluctuations. Chem. Phys.
Lett. 505, 75−80.
(23) Wang, J., Zhang, K., Xu, L., and Wang, E. (2011) Quantifying
the waddington landscape and biological paths for development and
differentiation. Proc. Natl. Acad. Sci. U.S.A. 108, 8257−8262.
(24) Torres, N. (1994) Modeling approach to control of
carbohydrate metabolism during citric acid accumulation by aspergillus
niger: I. Model definition and stablility of the steady state. Biotechnol.
Bioeng. 44, 104−111.
(25) Torres, N. (1994) Modeling approach to control of
carbohydrate metabolism during citric acid accumulation by aspergillus
niger: II. Sensitivity analysis. Biotechnol. Bioeng. 44, 112−118.
(26) Ao, P. (2004) Potential in stochastic differential equations:
Novel construction. J. Phys. A: Math. Gen. 37, L25−L30.
(27) Kacser, H., and Burns, J. A. (1973) The control of flux. Symp.
Soc. Exp. Biol. 27, 65−104.
(28) Qian, H. (2001) Mesoscopic nonequilibrium thermodynamics
of single macromolecules and dynamic entropy-energy compensation.
Phy. Rev. E 65, 0161021−0161025.
(29) Torres, N., and Voit, E. (2005) Pathway Analysis and
Optimization in Metabolic Engineering, Chemical Industry Press:
Beijing.
(30) Tyson, J., and Novak, B. (2001) Regulation of the eukaryotic
cell cycle: molecular antagonism, hysteresis, and irreversible
transitions. J. Theor. Biol. 210, 249−263.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300020f | ACS Synth. Biol. 2012, 1, 229−239238

http://pubs.acs.org/
mailto:ekwang@ciac.jl.cn
mailto:jin.wang.1@stonybrook.edu


(31) Lapidus, S., Han, B., and Wang, J. (2008) Intrinsic noise,
dissipation cost, and robustness of cellular networks: The underlying
energy landscape of mapk signal transduction. Proc. Natl. Acad. Sci.
U.S.A. 105, 6039−6044.
(32) Savageau, M. A. (1976) Biochemical System Analysis: A Study of
Function and Design in Molecular Biology, Addison-Wesley Pub. Co.,
Boston.
(33) Mattey, M. (1992) The production of organic acids. CRC Crit.
Rev. Biotechnol 12, 87−132.
(34) Hu, G. (1994) Stochastic Forces And Nonlinear Systems, pp 29−
74, Shanghai Scientific And Technological Education Press, Shanghai.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300020f | ACS Synth. Biol. 2012, 1, 229−239239


